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The human ether-a-go-go related gene (hERG) can be inhibited by marketed drugs, and this inhibition may
lead to QT prolongation and possibly fatal cardiac arrhythmia. We have collated literature data for 99 diverse
hERG inhibitors to generate Kohonen maps, Sammon maps, and recursive partitioning models. Our aim
was to investigate whether these computational models could be used either individually or together in a
consensus approach to predict the binding of a prospectively selected test set of 35 diverse molecules and
at the same time to offer further insights into hERG inhibition. The recursive partitioning model provided
a quantitative prediction, which was markedly improved when Tanimoto similarity was included as a filter
to remove molecules from the test set that were too dissimilar to the training set (r2 ) 0.83, Spearman rho
) 0.75,p ) 0.0003 for the 18 remaining molecules,>0.77 similarity). This model was also used to screen
and prioritize a database of drugs, recovering several hERG inhibitors not used in model building. The
mapping approaches used molecular descriptors required for hERG inhibition that were not reported previously
and in particular highlighted the importance of molecular shape. The Sammon map model provided the best
qualitative classification of the test set (95% correct) compared with the Kohonen map model (81% correct),
and this result was also superior to the consensus approach. This study illustrates that patch clamping data
from various literature sources can be combined to generate valid models of hERG inhibition for prospective
predictions.

Introduction

Numerous classes of drugs have been shown to prolong the
QT interval, which reflects a slowing of repolarization of the
ventricular myocardium.1,2 Excessive QT interval prolongation
can lead to the potentially life-threatening ventricular tach-
yarrhythmia, torsade de pointes. In cardiac tissue, inhibition of
potassium channels is associated with QT interval prolonga-
tion.3,4 The most common potassium channel linked to drug-
induced QT interval prolongation is also responsible for the rapid
component of the delayed rectifier potassium current (IKr). The
human ether-a-go-go-related gene (hERG) is believed to encode
the protein that underlies the delayed rectifier potassium current
IKr,5,6 and many drugs associated with QT interval prolongation
have been found to block hERG.7-9 Drugs such as cisapride,
terfenadine, astemizole, sertindole, and grepafloxacin have been
withdrawn from the market in recent years in some degree
because of cardiovascular toxicity associated with undesirable
blockade of this channel. It is therefore important for drug
discovery scientists to understand the structural requirements
of molecules binding to this potassium channel to avoid potential
toxicity.

To date, the in vitro assessment of the drug-mediated
interaction with these channels uses various cell systems
expressing the hERG channel as well as methods such as patch
clamping, radioligand binding, fluorescent probes, and rubidium
flux studies. These methods produce data of varying quality
and reliability that can be potentially modeled computationally.

Understanding the molecular features that confer hERG inhibi-
tion activity has therefore become a recent focus of considerable
computational and statistical modeling efforts. Previously
published studies have generated either numerous quantitative
structure-activity relationship (QSAR) or pharmacophore mod-
els for hERG. These have aided in a ligand-based understanding
of the molecular descriptors or three-dimensional disposition
of molecular features that are important for hERG inhibition.10-23

A preliminary pharmacophore was derived from a structurally
diverse literature set of 15 molecules known to inhibit hERG
in patch clamping studies with predominantly HEK 293 cells.16

This model was also assessed using a test set of 22 molecules
including known inhibitors such as antipsychotics and their
metabolites that had been tested with hERG-expressing HEK
293 cells. Classes of hERG inhibitors using data from Chinese
hamster ovary (CHO) cells expressing the channel were
predicted in a computational neural network analysis trained
with 244 molecules.11 A further pharmacophore was derived
using the comparative molecular field analysis (CoMFA) method
for 31 inhibitors.20 Recently a comparative molecular similarity
analysis (CoMSiA) used 28 molecules with patch clamping data
dominated by sertindole analogues tested in CHO cells express-
ing hERG.13 The model was also placed in the context of the
protein using a homology model based on the MthK channel13

to illustrate key interactions with Phe 656 and Tyr 652
residues,113 the same residues as identified by Mitcheson et al.
earlier. Attempts at building a QSAR model with a recursive
partitioning algorithm and based on patch clamping data for
hERG with 66 molecules have also been described along with
a diverse test set of 25 molecules.18 An updated version of this
model was also built with 99 literature molecules18 that has been
used recently to rank the 23 sertindole analogues generated by
Pearlstein et al.114 (Spearman’s rho) 0.74,p < 0.0001,r2 )
0.53).17 This type of model is perhaps less visually interpretable
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than a pharmacophore because it is based on 2D descriptors,
but it enables a very high throughput for scoring virtual libraries
of molecules. More recently another molecular descriptor-based
approach using a partial least squares algorithm was applied to
a 55-molecule training set and found to be predictive for a 13-
compound test set (r2 ) 0.81).15 More recent studies include a
combined classification and pharmacophore approach,22 a
genetic programming classification model,21 stepwise regres-
sion,23 consensus of neural network and Bayesian classification
models,14 a support vector machine model,10 and finally a
method using PCA and PLS.19

The focus to date has been primarily on individual models
of a “global” nature consisting of structurally divergent mol-
ecules across several therapeutic targets (antipsychotics, anti-
histamines, antibiotics, etc.). “Local” models have also been
generated around narrow structural series such as the sertindole
analogues.13 For example, publications containing [3H]dofetilide
binding data for the 5HT2A class of molecules,24,253-aminopy-
rrolidinone farnesyltransferase inhibitors,26 have been used to
produce individual pharmacophores that were ultimately com-
bined to suggest common areas of positive ionizable features

and hydrophobicity from aromatic rings.17,27These ligand-based
computational models along with a growing number of homol-
ogy models28,29 have provided insights that complement the
experimental studies such as site directed mutagenesis.30,31

The present study illustrates for the first time the comparison
of multiple different modeling approaches including Kohonen
map, Sammon map, and recursive partitioning with the same
training set to assess whether one or a combination of ap-
proaches is preferable. All hERG models were assessed with a
large external data set of published molecules and demonstrate
good predictivity. In addition, we demonstrate that a similarity
measure is of considerable value to limit extrapolations far
beyond the training set of the quantitative recursive partitioning
model when performing prospective testing. The descriptors
selected for the qualitative mapping methods provide further
insight into the structural features of hERG inhibitors when
compared with those generated by other methods previously.
Finally, we have also shown how the recursive partitioning
model can be used to rapidly screen a database of known drugs
in an attempt to prospectively identify molecules that may bind

Table 1. hERG Training Set Molecules Obtained from Various Literature Sources and Cell Types Used as the Training Set for Computational Model
Buildinga

compd log10 IC50 (µM) cell type ref compd log10 IC50 (µM) cell type ref

2-hydroxymethylolanzapine 1.06 HEK 16 ibutilide -1.82 AT-1 45
9-hydroxyrisperidone 0.11 HEK 16 imipramine 0.53 CHO 57
alosetron 0.505 HEK 16 isradipine 1 CHO 11
amiodarone 0 AT-1 32 josamycin 2.01 HEK 43
amitriptyline 1 CHO 33 ketoconazole 0.278 HEK 16
astemizole -3.04 HEK 34 laam 0.34 HEK 38
azimilide -0.22 CHO 35 levofloxacin 2.96 CHO 42
bepridil -0.26 COS 36 lidocaine 2.42 HEK 54
BRL 32872 -1.7 HEK 37 loratadine -0.76 HEK 58
buprenorphine 0.87 HEK 38 LY97241 -0.82 XO 59
carvedilol 1.02 XO 39 MDL-74156 0.77 HEK 49
cetirizine 1.48* XO 40 mefloquine 0.75 CHO 60
chlorpheniramine 1.32 XO 41 meperidine 1.87 HEK 38
chlorpromazine 0.167 CHO 33 mesoridazine -0.495 HEK 16
ciprofloxacin 2.98 CHO 42 methadone 0.99 HEK 38
cisapride -2.174 HEK 16 methylecgonidine 2.23 HEK 44
clarithromycin 1.52 HEK 43 mexiletine 1 CHO 11
clozapine -0.49 HEK 16 mibefradil 0.16 COS 36
clozapineN-desmethyl 0.65 HEK 16 mizolastine -0.455 HEK 45
clozapineN-oxide 2.12 HEK 16 MK499 -1.49 XO 61
cocaethylene 0.079 HEK 44 morphine 3 HEK 38
cocaine 0.64 HEK 44 moxifloxacin 2.11 CHO 42
codeine 2.48 HEK 38 N-desbutylhalofantrine -1.14 HEK 62
descarboxyl-loratadine 0.26 HEK 45 nicotine 2.39 HEK 16
desipramine 0.14 HEK 16 nifedipine 1.7 HEK 46
desmethyl-astemizole -3 HEK 34 nitrendipine 1* COS 63
desmethyl-erythromycin 2.17 HEK 43 norastemizole -1.56 HEK 34
diltiazem 1.23 HEK 46 olanzapine -0.63 HEK 16
diphenhydramine 1.43 XO 47 olanzapine desmethyl 1.15 HEK 16
disopyramide 1.96 AT-1 32 oleandomycin 2.53 HEK 43
dofetilide -1.92 HEK 48 ondansetron -0.09 HEK 49
dolasetron 1.083 HEK 49 perhexiline 0.89 CHO 64
domperidone -0.79 CHO 50 pimozide -1.26 HEK 16
droperidol -1.49 HEK 51 propafenone -0.36 HEK 54
E-4031 -1.74 HEK 16 quetiapine 0.76 CHO 65
ebastine -0.85 XO 52 quinidine -0.495 AT-1 32, 66
EDDP 1.7 HEK 38 risperidone -0.829 HEK 16
epinastine 2 XO 53 roxithromycin 1.56 HEK 43
erythromycin 1 HEK 43 sertindole -1.83 HEK 16
erythromyclamine 2.44 HEK 43 sildenafil 0.518 HEK 16
fentanyl 0.25 HEK 38 sparfloxacin 1.25 CHO 42
fexofenadine 1.33 HEK 45 sulfamethoxazole 4 CHO 11
flecainide 0.59 HEK 54 terfenadine -0.67 HEK 16
gatifloxacin 2.11 CHO 42 terikalant -0.6 XO 67
glimepiride 2.7 neuroblastoma cells 55 thioridazine -1.479 HEK 16
glyburide 1.87 neuroblastoma cells 55 trimethoprim 2.38 CHO 11
granisetron 0.57 HEK 49 verapamil -0.84 HEK 46
grepafloxacin 1.64 CHO 42 vesnarinone 0.041 HEK 68
halofantrine -0.708 CHO 56 ziprasidone -0.9 HEK 16
haloperidol -1.57 HEK 16

a HEK ) HEK-293. XO ) Xenopus oocytes. CHO) Chinese hamster ovary cells./ ) maximum concentration studied.
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to hERG. The selected molecules may be tested in vitro in future
to evaluate these predictions.

Methods

Training Set. The literature was used to derive a structurally
diverse training set for model building following from previous
publications that had collated patch clamping hERG data (log10-
(IC50 in µM) ) -3.04 to 4, Table 1).16,18 Most of these data
are from HEK-293 and CHO cells with a small number of data
points from Xenopus oocytes (XO) and other cell types.
Attempts to restrict the data to predominantly HEK-293 cell
data were made to limit IC50 variability (seen when compared
with XO, as well as when derived from many different
laboratories using subtle experimental differences in the patch
clamping procedure), which has been described previously by
us.16,18 Although a small number of molecules have been well
studied by several laboratories in the same cell type, in the vast
majority of cases a single study is taken as representative of
the patch clamping IC50 because for most molecules this was
the only example available. The reader is referred to the original
reference for each molecule for details on the standard errors
obtained in these studies. No other attempts at data standardiza-
tion were performed. Initial efforts at model construction without
the XO data did not appear to be significantly different.
Therefore, the total training set included 99 structures, which
were assigned to 3 principal classes: class 0, 34 compounds
with log10 IC50 < 0; class 1, 31 compounds with log10 IC50 )
0-1; class 2, 34 compounds with log10 IC50 > 1.

Computational Methods

Recursive Partitioning.The ChemTree recursive partitioning
software (GoldenHelix, Bozeman, MT) was run on a Pentium
4 processor. The molecules and log10-transformed IC50 data
(µM) were imported as an sdf file. ChemTree was used to
generate 564 path length molecular descriptors,69,70which were
used with the log10 IC50 data to generate 100 random tree models
using some of the descriptors available with the following
options: Bonferroni adjustedp value threshold for splits, 0.99;
maximal segments, 10; parallel threads, 1; Segmenting algo-
rithm, Approximate, 0 (n1.5) and resampling iterations, 10 000.
A second tree model was later generated to incorporate the test
set molecules and consisted of 134 molecules. ChemTree was
used to generate 694 path length molecular descriptors for these
molecules, which were used with the log10 IC50 data to generate
100 random tree models (using some of the descriptors
available) with the same options described above.

Molecular Descriptors. A wide range of different molecular
descriptors were calculated for all compounds with the Smart
Mining v1.01 (ChemDiv, Inc., San Diego, CA) software tool.
These included electronic, topological, spatial, and structural
descriptors. A total of more than 150 initial descriptors were
calculated for each compound. To reduce the number of
descriptors that could contain redundant information, principal
component analysis (PCA) was performed. About 90% of the
variance could be explained by the first 8-10 PCs. Descriptors
maximally contributing to the first significant PCs were selected
on the basis of these results as the most relevant, and these
descriptors were used as input parameters in all further
computational experiments.

Training Set for Mapping Methods. To clean the input data
for their subsequent use in mapping experiments, the training
set molecules were filtered on the basis of molecular weight
(<700) to limit the data to small molecules. With this threshold,
the following six molecules were removed: erythromycin,

clarithromycin, roxithromycin, josamycin, desmethyl-erythro-
mycin, erythromyclamine. The filtered training set for mapping
methods included a total of 93 structures: 32 compounds with
log10 IC50 < 0 (class 0); 29 compounds with log10 IC50 ) 0-1
(class 1); 32 compounds with log10 IC50 > 1 (class 2).

Kohonen Self-Organizing Maps. The generation of the
Kohonen self-organizing maps (SOMs)71 was also conducted
using the Smart Mining software. The training parameters for
the SOM were as follows: the number of interactions for the
training runs was 2000, the starting adjustment radius for the
training runs was 5, and the learning rate factor was 0.01. After
the SOM was generated, we studied the distribution of opposite
compound groups (potent or nonpotent hERG inhibitors) as
separate maps.

Sammon Nonlinear Mapping.The Sammon map72 genera-
tion was conducted using a program developed internally at
ChemDiv as part of the Smart Mining, v1.01 software suite.
The nonlinear map (NLM) was built on the basis of the
following parameters: maximal number of iterations 500;
optimization step 0.1. Euclidean distance was used as a similarity
measure. The Sammon NLM procedure allows the creation of
a 2-D image of the studied multidimensional property space.
For visual discrimination of the studied drug categories on the
nonlinear map, we used the separation lines. The positioning
of the separation line was determined using the nonlinear
Support Vector Machine (SVM) algorithm73 as implemented
in the LibSVM-2.4 program (URL: http://www.csie.ntu.edu.tw/
∼cjlin/libsvm/). The separation line represents the largest margin
separating the studied compounds classes, which is defined as
the sum of the shortest distances from the decision line to the
closest points for both classes and thus can serve as an optimal
discriminator between the two studied compound categories.

External Validation and Statistical Analysis. The 35
molecules used to test all the models were obtained from the
literature (log10(IC50 in µM) ) -1.79 to 3.64) following the
initial QSAR model construction with the training set. These
35 molecules represent those that were not found initially when
searching for the training set or were published later. These test
set molecules were input into ChemTree as an sdf file, and
predictions were made with the 99-molecule, 100-tree models
generated previously. The in vitro observed data and the
computationally predicted data for the average of the models
were compared and assessed using ther2 and the Spearman rho
correlation available in JMP 5.1 (SAS Institute Inc., Cary, NC).
The similarity of the molecules in the test set to those in the
recursive partitioning model were assessed using the Accord
software molecule descriptors (Accelrys, San Diego, CA) and
the Tanimoto similarity coefficient.74 The Tanimoto coefficient
is a/(a + b + c) wherea is the number of bits common to both
the query and target structures,b is the number of bits
exclusively in the query structure, andc is the number of bits
exclusively in the target structure. In this case a value of 1
indicates that the molecule is identical to one in the training
set. As this value decreases, the less similar the molecule is to
molecules in the training set. Similarly, the molecular descriptors
selected for the mapping methods were calculated for these test
set molecules followed by Kohonen and Sammon mapping in
order to obtain qualitative predicted classifications of hERG
activity with these models. These predictions were compared
with the observed classifications of hERG activity.

Consensus Analysis of hERG Models.We also performed
a consensus analysis of the test set molecules using predicted
data from all three computational methods for modeling hERG
inhibition. The consensus scoreSc,i for each of the two
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considered classesi (i ) 0 and 2) was calculated asSc,i ) (Srp,i

+ Skm,i + Ssm,i)/3, whereSrp,i, Skm,i, andSsm,I are the predicted
classes for the recursive partitioning, Kohonen mapping, and
Sammon mapping, respectively. We compared the consensus
scores for classes 0 and 2 and assigned a compound to a
particular class with the higher consensus score. It was
demonstrated that the mapping techniques do not provide a
useful classification for the intermediate class 1. Therefore, in
this analysis, we calculated the consensus scores for only 21
molecules in the test set belonging to experimental classes 0
and 2.

Database Searching. An in-house database was generated
as described previously75 consisting of 578 known drugs from
the Clinician’s Pocket Drug Reference.76 These represent drugs
that are in clinical use in the U.S.. This database was created
using structures in the sdf format. The hERG recursive

partitioning model (n ) 99 molecules) developed with ChemTree
was used to search this database. The similarity of the input
database molecules to those in the individual QSAR model
training set was calculated using the Tanimoto coefficient74 as
described above. An sdf file of predictions for hERG and
Tanimoto similarity values were then output for all database
molecules. This file was sorted in ChemDraw for Excel
(CambridgeSoft, Cambridge, MA) and ranked by predicted
log10 IC50. The 25 most potent predicted inhibitors were
evaluated, and any molecules in the model training set or test
set were removed from this list. The remaining molecules were
then used as queries for searches in PubMed to find relevant
literature relating to hERG inhibition.

Results

Recursive Partitioning. The training set for 99 molecules
with patch clamping hERG data, consisting primarily of data
from HEK-293 cells, was used to generate 100 random models
with an observed versus predicted log10 IC50 correlationr2 )
0.90 (Figure 1).

Analysis of the 35-molecule test set (Table 2) using quantita-
tive predictions derived from this recursive partitioning model
resulted in a relatively low though statistically significant
correlation (r2 ) 0.33, Spearman rho) 0.55, p ) 0.0006)
(Figure 2a). When the Tanimoto similarity analysis of the test
set molecules was used (Figure 2b), it was observed that the
log of the difference between observed and predicted log10 IC50

increased as the Tanimoto similarity declined. Therefore, a
Tanimoto similarity index greater than 0.77 was found to contain

Figure 1. Training set correlation for 99 molecules using 100 random
recursive partitioning models.

Table 2. Observed and Predicted hERG IC50 Results for the Test Set Compounds Derived with the Different QSAR Modelsa

recursive partitioning predicted classb

no. name

exptl
log10(IC50 in µM)

(classb)

prediction
log10(IC50 in µM)

(classb)
prediction

std dev

similarity
(arbitrary

units)

on
Sammon

map

on
Kohonen

map

predicted
consensus

classb
cell
type ref

1 pilsicainide 1.3 (2) 0.6 (1) 0.65 0.82 2 0 unclass HEK 77
2 ajmaline 0 (1) 0.78 (1) 0.54 0.74 HEK 78
3 budipine 1.0 (1) 0.73 (1) 0.89 0.77 XO 79
4 tamoxifen 1.65 (2) 0.84 (1) 0.66 0.76 2 2 2 XO 80
5 prulifloxacin 2.52 (2) 2.12 (2) 0.28 0.91 2 2 2 HEK 81
6 saxitoxin -0.32 (0) 1.38 (2) 0.66 0.73 2 2 2 HEK 82
7 phenytoin 2.38 (2) 0.96 (1) 0.33 0.70 2 2 2 HEK 83
8 4AP 3.64 (2) 0.79 (1) 1.09 0.34 2 2 2 HEK 84
9 phenobarbital 3.48 (2) 1.12 (2) 0.55 0.72 2 2 2 HEK 83

10 miconazole 0.32 (1) 0.49 (1) 0.46 0.80 HEK 85
11 trazodone 0.46 (1) 0.04 (1) 0.66 0.8 HEK 86
12 trifluoperazone 0.96 (1) 0.019 (1) 0.85 0.74 HEK 87
13 lamotrigine 2.36 (2) 1.33 (2) 0.62 0.74 2 2 2 HEK 88
14 naringenin 1.56 (2) 1.08 (2) 0.48 0.82 2 2 2 HEK 89
15 pentamidine 0.7 (1) 0.98 (1) 0.89 0.68 HEK 90
16 clenbuterol 1.9 (2) 1.36 (2) 0.95 0.63 2 2 2 HEK 91
17 metoclopramide 0.73 (1) 0.93 (1) 1.03 0.81 HEK 92
18 dronedarone -1.23 (0) -1.35 (0) 1.17 0.86 0 0 0 HEK 93
19 GF109203X 0 (1) 0.27 (1) 0.47 0.85 HEK 94
20 vardenafil 1.1 (2) 0.43 (1) 0.53 0.97 2 0 unclass HEK 95
21 tadalafil 2 (2) 1.19 (2) 0.89 0.88 2 0 2 HEK 95
22 tolteridone -1.77 (0) 1.24 (2) 0.56 0.76 0 0 0 CHO 96
23 chloroquine 0.4 (1) 0.15 (1) 0.57 0.74 HEK 97
24 lumefantrine 0.9 (1) -0.32 (0) 0.61 0.74 0 0 HEK 97
25 desbutyllumefantrine 0.74 (1) -0.33 (0) 0.62 0.74 HEK 97
26 prazosin 0.19 (1) 0.59 (1) 0.75 0.79 HEK 98
27 doxazosin -0.23 (0) 0.61 (1) 0.76 0.81 0 0 0 HEK 98
28 terazosin 1.24 (2) 0.59 (1) 0.75 0.79 2 2 2 HEK 98
29 clomiphene -0.74 (0) 0.016 (1) 0.44 0.72 0 0 0 HEK 99
30 lidoflazine -1.79 (0) -1.18 (0) 0.68 0.79 0 0 0 HEK 100
31 amsacrine -0.67 (0) 0.15 (1) 2.06 0.68 0 0 0 HEK 101
32 DW286a 1.94 (2) 1.57 (2) 1.28 0.88 2 2 2 CHO 102
33 AVE0118 1 (1) 0.62 (1) 1.02 0.80 CHO 103
34 AMP579 1 (1) 0.50 (1) 1.19 0.85 HEK 104
35 propranolol 1.9 (2) 1.14 (2) 0.91 0.73 2 2 2 HEK 91

a The observed data was retrieved from different literature sources and cell types.b log10 IC50 < 0 (class 0); log10 IC50 ) 0-1 (class 1); log10 IC50 > 1
(class 2); HEK) HEK-293; XO ) Xenopus oocytes; CHO) Chinese hamster ovary cells; unclass) unclassified.
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molecules with log10 IC50 that were less than 1 log unit different
from the observed data. These 18 remaining molecules alone
produced dramatically improved testing correlation statistics (r2

) 0.83, Spearman rho) 0.75,p ) 0.0003, Figure 2c) compared
with using the whole test set. There did not appear to be any
relationship between the log of the difference between the
observed and predicted log10 IC50 and the standard deviation
for the predictions for the recursive partitioning models.

The original training set and the test set were combined to
produce an updated model for future testing. A 100-tree
recursive partitioning model with these 134 molecules produced
a training correlation ofr2 ) 0.85 for observed and predicted
log10 IC50 (data not shown). The mining of the literature in the
future will enable us to derive additional molecules that can be
used to test this model in turn.

The quantitative test set predictions were also placed into
the qualitative three classes based on the activity cut-offs
described earlier. This produced 22 of 35 (63%) correct class
predictions. When the Tanimoto similarity cut-off described

above was used to limit the test set to those molecules that
possessed a Tanimoto similarity index greater than 0.77, 14 of
18 molecules (77.8%) were correctly classified.

Descriptor Selection for Mapping Studies.PCA was used
to select eight descriptors maximally contributing to the first
significant principal components (Table 3). These descriptors
were calculated as defined by Todeschini and Consonni.105 The
topological mean square Wiener index represents a measure of
molecular branching and is related to molecular surface area,
thus reflecting molecular compactness. The topological Balaban
index of modified connection distance provides information on
the intramolecular relationships between atoms and accounts
for both bond multiplicity and heteroatoms. The number of
H-bond donors represents a measure of the hydrogen-bonding
ability of a molecule expressed as a count of hydrogen atoms
bonded to oxygen, nitrogen, or sulfur. The hydrophilicity index
is a simple empirical index based on count descriptors.105 The
electrotopological state (E-state) indices encode information
about both the topological environment of an atom and the
electronic interactions resulting from all other atoms in the
molecule. E-state indices encode some essential molecular
features characterizing the topology, polarity, and hydrogen-
bonding capabilities of a molecule.

Sammon Nonlinear Mapping. The filtered training set of
93 molecules (Table 1) with 8 molecular descriptors (Table 3)
calculated for each compound was used for the generation of a
Sammon nonlinear map. After the nonlinear map was generated,
we identified the positions of compounds belonging to classes
0-2 (Figure 3). Obviously, compounds belonging to the
opposite classes 0 and 2 (white and gray circles, respectively)
occupied distinctly different areas on the map. Compounds
belonging to the intermediate class 1 with IC50 ) 0-1 µM
(shown as diamonds) occupied a wide area on the map
overlapping with the sites of location of classes 0 and 2
compounds (Figure 3).

The observed differences in mapping to the Sammon map
were used to assess the hERG inhibition profile for novel
compounds. The positions of the 35 test set compounds (Table
2) on the same map are shown in Figure 4. The test set
predictions based on the cut-offs described earlier are shown
in Table 2. Thus, 6 of 7 (86%) molecules in class 0 and 14
of 14 (100%) in class 2 were correctly classified, resulting in
a total correct classification of 95% (Table 4). As observed
with the training set, compounds belonging to the intermediate
class 1 occupied a wide area on the map overlapping with the
sites of location of classes 0 and 2 compounds.

Kohonen Self-Organizing Maps.The same training set of
93 molecules (Table 1) with 8 molecular descriptors (Table 3)
calculated for each compound was used to generate a Kohonen
self-organizing map. After the map was generated, we identified

Figure 2. (a) Test set correlation using the 99 molecule, 100 random
recursive partitioning models with the 35 molecule test set. (b) Plot of
the log of the difference between observed and predicted IC50 values
for the training set versus the Tanimoto similarity distance. (c) Test
set correlation using the 99 molecule, 100 random recursive partitioning
model with the filtered test set of 18 molecules (Tanimoto similarity
index greater than 0.77). Note the removal of extreme outliers when
compared with part a.

Table 3. Selected Molecular Descriptors Used in Kohonen and
Sammon Map Modelsa

descriptor abbreviation descriptor name

Wrms topological mean-square Wiener index
Jt topological Balaban index of modified

connection distance
S(-CH2-) electrotopological index of CH2 group
S(dCH-) electrotopological index of CH group
S(>N-) electrotopological index of>N group
HS(CH2) electrotopological index of CH2 group
Don number of H-bond donors
Hy hydrophilicity index

a These represent the remaining descriptors from an initial set of over
150 that were generated with the Smart Mining software tool followed by
principal component analysis.
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the positions of compounds belonging to molecules belonging
to classes 0-2 (Figure 5a-c, respectively). According to the
figures, compounds belonging to the opposite classes 0 and 2
(parts a and c of Figure 5, respectively) occupied distinctly
different areas on the map. Compounds belonging to class 1
with IC50 ) 0-1 µM (Figure 5b) occupy an intermediate area
on the map partially overlapping with the sites of classes 0 and
2 compounds.

The distance between nodes on the Kohonen map is a
dimensionless parameter; it represents an abstract, discrete
distance between the points in a multidimensional property
space. For the training set, the areas of strong and poor binders
can be identified as the nodes on the map, where the percentage
of strong or poor binders (total number equal to 100%) is higher
than the percentage of compounds belonging to the opposite
category. The positions of 35 test set compounds on this map
(Figure 6) and the experimental and predicted data are individu-
ally summarized (Table 2). The map correctly classified 6 of 7

Figure 3. Sammon Map for the 93 hERG training set molecules
generated for 8 molecular descriptors illustrating the positions of
compounds in classes 0 (white circles), 1 (diamonds), and 2 (gray
circles).

Table 4. Percentage of Correctly Classified Compounds from the External Test Set for hERG Determined Using the Kohonen and Sammon Mapping
Techniques

training set test set

class no. compds
Kohonen,

no. compds, %
Sammon,

no. compds, % no. compds
Kohonen,

no. compds, %
Sammon,

no. compds, %

log10 IC50 < 0 (class 0) 32 26, 81 28, 88 7 6, 86 6, 86
log10 IC50 > 1 (class 2) 32 27, 84 27, 84 14 11, 79 14, 100
total 93 53, 83 55, 86 35 17, 81 20, 95

Figure 4. Distribution of the test set molecules on the Sammon map.
The numbers shown correspond to the record numbers in Table 2.

Figure 5. Kohonen maps for hERG training set data individually
showing the distribution of molecules in each of the activity classes
using the same molecular descriptors: (a) the area of compounds with
log10 IC50 < 0 (32 compounds); (b) with log10 IC50 ) 0-1 (29
compounds); (c) with log10 IC50 > 1 (32 compounds). Colors indicate
the intensity of the molecule distribution and have been smoothed for
presentation purposes. Lighter colors represent higher densities of
distribution of molecules.
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(86%) of class 0 compounds and 11 of 14 (79%) of class 2
compounds with a total of 81% correct predictions (Table 4).
The quality of this discrimination is statistically significant only
in the case of classes 0 and 2 because molecules belonging to
class 1 occupied a wide area on the map. Although the
distribution of compounds on the map suggests the method may
be able to discriminate between all the studied classes 0-2,
more data are required for a statistically valid result.

Consensus Analysis of Models.A consensus analysis of the
21 test set molecules available across all three computational
methods for the two classes resulted in 6 of 7 (86%) compounds
for class 0 and in 12 of 14 (86%) compounds for class 2 that
were correctly predicted. These results are not representative
of a marked improvement over the individual methods alone
because the Sammon mapping predictions alone are preferable.
One compound, saxitoxin (no. 6 in Table 2), was classified
incorrectly by all three computational methods. Two other
compounds, pilsicainide and vardenafil (nos. 1 and 20, Table
2), gave different results with all three methods, and these
compounds therefore remained unclassified using the approach
for consensus score calculation.

Database Searching. The recursive partitioning hERG model
(n ) 99 molecules) was used to search a database of 578 known
drugs.76 Out of the top 25 molecules ranked by the predicted
hERG log10 IC50 value, there were 12 molecules (2.1% of the
whole database, Table 5) that were not in the model training
set. The remaining 13 molecules retrieved in this set (present
in the training set) had predicted log10 IC50 values between
-0.36 and-1.92, strongly indicative that the other molecules
were also likely to be hERG inhibitors. Eleven of these 12
nontraining set molecules remaining had Tanimoto similarity
values greater than or equal to 0.77 (Table 5), indicating that
they were on or above the threshold described earlier and likely
to provide good predictions of binding less than 1 log unit
different from the observed data. A search of the literature using
PubMed to find published data on these molecules indicated
that citalopram, pergolide, and sotalol had confirmed interactions
with hERG at nanomolar to micromolar concentrations. In the

case of pergolide the prediction is within 1 log of the observed
log10 IC50. In addition, QTc prolongation in humans for citalo-
pram,106paroxetine,107and the voltage- and use-dependent block
of sotalol108 have been recognized in the literature. The
remaining molecules have not been tested in vitro to our
knowledge. A similar approach to database searching with the
Sammon and Kohonen mapping approaches for hERG has not
been performed.

Discussion

There have been considerable efforts to address the attrition
of drug candidates in drug discovery using earlier and more
extensive in vitro testing as well as computational approaches
for absorption, distribution, metabolism, excretion, and toxicity
(ADME/Tox).27 Cardiotoxicity was identified as one area for
particular attention because several drugs were removed from
the market as a result of undesirable QT prolongation associated
with binding to the hERG potassium channel.5-9 Since 2002,
there have been at least 14 studies that have described individual
QSAR models, statistical models, or pharmacophores for
hERG.10-23 These studies have encompassed a wide set of data
generation and modeling techniques as well as an array of
molecules for model building and testing. The results of these
methods have produced some pharmacophore features and
molecular descriptors for identifying hERG inhibitors that can
be briefly summarized as follows: (A) four hydrophobes
between 5.2 and 7.5 Å from a positive ionizable feature;16 (B)
three aromatic (hydrophobic) features 4.6-9.1Å from a central
nitrogen were key;20 (C) at least two hydrophobic features 6-8
Å from a basic nitrogen;114 (D) a hydrophobe (or hydrogen bond
acceptor), a ring aromatic, and a positive ionizable feature are
key;22 (E) two hydrophobes with an asymmetrically placed
protonated nitrogen between them;21 (F) a basic protonated
nitrogen or hydrogen bond donor, hydrogen bond acceptor, and
hydrophobes;19 (G) two ring aromatic features, a hydrophobe,
and a positive ionizable feature;17,27(H) calculated logP (ClogP,
a measure of hydrophobicity) is higher in potent hERG inhibitors
compared with nonpotent inhibitors;11 (I) ClogP, molar refrac-
tivity, partial negative surface area, polarizability, and hydro-
phobicity are differentiating descriptors.15

It is evident that from all of these preceding studies that there
are some gross similarities in the suggested requirements for
hERG inhibitors requiring hydrophobic features surrounding a

Figure 6. Distribution of classification areas on the Kohonen SOM
(shaded background) and positions of the test set compounds: com-
pounds with log10 IC50 > 1 (gray circles); compounds with log10 IC50

< 0 (white circles); compounds with log10 IC50 ) 0-1 (diamonds).
The numbers shown correspond to the record numbers in Table 2.

Table 5. Molecules Retrieved and Scored with the hERG Recursive
Partitioning Modela

molecule
Tanimoto
similarity

predicted hERG
log10(IC50, µM)

published hERG
IC50, µM

(log10 IC50) ref

delavirdine 0.83 -1.37 na
levocabastine 0.77 -1.36 na
meperidide 0.81 -1.12 na
citalopram 0.80 -0.84 3.97 (0.59) 107, 109
flurazepam 0.78 -0.75 na
pergolide 0.78 -0.62 0.12 (-0.92) 110
fluvastatin 0.85 -0.29 na
sotalol 0.85 -0.28 ∼30-269

(1.48-2.42)
111, 112

paroxetine 0.77 -0.23 na
pramoxine 0.67 -0.17 na
mezlocillin 0.82 -0.16 na
loperamide 0.85 -0.13 na

a The 99-molecule recursive partioning model was used to search a
database of 578 known drugs that are used in the U.S.76 The molecules
were sorted by the predicted hERG log10(IC50 in µM), and the 25 highest
affinity predictions were assessed. Molecules present in the training set were
removed to leave unique predictions. The literature was then searched to
obtain verification and examples of IC50 values. na) not available.
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positive ionizable/basic nitrogen feature. However, depending
on the molecules and techniques used for model building, the
pharmacophore or descriptors suggested may vary. In the current
study we have used a consistent set of literature derived
molecules with hERG patch clamping data for model building
and testing with different descriptors and three model building
techniques, namely, recursive partitioning, Kohonen mapping,
and Sammon mapping. The aim was to assess whether these
methods could be used alone or together to accurately predict
hERG inhibition as well as to gain some further insights into
the structural requirements for binding. The descriptors selected
by PCA analysis and used for the Sammon and Kohonen
mapping techniques (Table 3) in general agree with the prior
observations above in the need for hydrophobic features.
However, the inclusion of the Wiener index represents a measure
of molecular branching and molecular compactness, and the
Balaban index connection distance provides information on the
intramolecular relationships between atoms. These descriptors
suggest that molecular shape or topological characteristics are
also very important for hERG inhibitors and were not explicitly
described previously in the literature.

Considerable research efforts have focused on machine
learning algorithms, which can be used for drug discovery for
predicting molecular properties for very large numbers of
molecules, to ultimately act as a filter. Recursive partitioning
methods have been used widely with large sets of molecules
and either continuous115,116or binary data, for therapeutic target
end points as well as cytochrome P450 inhibition117 and AMES
mutagenicity.70 In the current study the recursive partitioning
model generated a statistically significant rank ordering of the
35 molecule test set (Figure 2a) that was improved dramatically
when only molecules with a Tanimoto similarity greater than
0.77 were considered (Table 2, parts b and c of Figure 2). The
role of molecular similarity as a descriminator for prediction
accuracy has been described;118however, this represents the first
time that it has been applied to an hERG model, to our
knowledge. This recursive partitioning model combined with
the similarity calculation represents a fast method to score for
potential interactions with hERG. We have also used this
recursive partitioning model to quantitatively assess a library
of known drugs and predict those that may have interactions
with hERG. Three known hERG inhibitors that were not in the
training set were identified in the top 25 scored molecules
alongside 13 molecules from the training set that were potent
inhibitors. Using both the similarity score and the predicted IC50

indicates that most of the remaining molecules may be
considered for future testing in vitro to further verify our
predictions. This example also highlights the limited amount
of data in the public domain relating to known drugs and hERG
interaction. Such database searching efforts could enable pri-
oritization of larger compound databases for in vitro testing such
as the NIH molecular libraries initiative (http://nihroadmap.ni-
h.gov/molecularlibraries/).

The Sammon maps describe all relative distances between
all pairs of compounds, and the distance of two points on the
map directly reflects the similarity of the compounds. Among
the other dimensionality reduction techniques that have appeared
in the statistical literature, Sammon nonlinear maps are unique
because of their conceptual simplicity and ability to reproduce
the topology and structure of the data space in a faithful and
unbiased manner. This method has a practical value and can be
recommended for analysis of small-sized combinatorial libraries
(up to several thousand compounds) aimed at the selection of
subsets with enhanced knowledge-based information content.

We have described the use of Sammon maps with various
ADME data sets previously.119 The Sammon map that was
generated in this study (Figure 3) is a useful tool for visual
analysis of various quantitative and qualitative dependencies
in the studied set of hERG inhibitors (Figure 4) with high
classification rates for the test set (Tables 2 and 4). The
distribution of IC50 values throughout the nonlinear map
demonstrates an obvious gradient (Figure 7), which suggests
that the map is able to reflect even more subtle structure-
activity relationships for the studied hERG inhibitors. It should
also be stressed there are disadvantages of this technique
particularly for large data sets were the Sammon nonlinear map
computation is increasingly intractable. The approach may also
generate a 2D mapping that poorly approximates the original
distances when the number of compounds is large.120 Also, if
additional data points or data sets are to be included in the
projection, a complete recomputation of the map is required
for all data points, hence further complicating testing.

To overcome these drawbacks we performed an additional
series of experiments using self-organizing Kohonen maps for
hERG inhibitors. Kohonen maps71 were originally designed in
an attempt to model intelligent information processing. The
general idea behind this method is to map a set of vectorial
samples onto a two-dimensional lattice in a way that preserves
the topology of the original space. Kohonen maps belong to a
class of neural networks known as competitive learning or self-
organizing networks. The Kohonen map consists of artificial
neurons that are characterized by weight vectors with the same
dimensionality as the descriptor set. The neurons are connected
by a distance-dependent function. In an unsupervised training
algorithm the neurons self-organize until their pairwise neigh-
borhoods represent the correct topology of the original data set.
Kohonen maps have recently been applied to successfully model
cytochrome P450 mediated drug metabolism.121,122In the present
study, the nonlinear mapping algorithm provides clear visual
discrimination between the principal classes of hERG inhibitors
(Figure 5). The average classification quality is high for both
training and test selections; up to 86% and 95% of compounds
were classified correctly in the corresponding data sets (Table
4). At the same time, insufficient statistics prevent correct
assignment of compounds belonging to the intermediate class
1. Figure 5 shows the distribution of the training set compounds
on the Kohonen map that was generated. Obviously, compounds
belonging to classes 0 (Figure 5a) and 2 (Figure 5c) occupy

Figure 7. Heat map distribution of hERG IC50 values on the Sammon
nonlinear map. Darker shading represents higher IC50 values.
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distinctly different sites on the map. Nevertheless, while the
potent and nonpotent inhibitors are located in distinctly different
sites on the map, the class 1 compounds typically occupy the
intermediate positions near the line of separation. The same
conclusion can be made from analysis of location of class 1
compounds from the set on the Sammon map (Figure 4). At
present after these two methods were used, compounds predicted
in this region as class 1 would need to be tested in vitro to
verify the correct classification. Our results also demonstrate a
good generalization ability of the model with 6 of 7 (86%) of
class 0 compounds and 11 of 14 (79%) of class 2 compounds
being classified correctly in the external test set (Figure 6, Table
4). In the present case, the Sammon mapping technique
outperformed the Kohonen maps in classification of compounds
from the external test set (Table 4), but both are acceptable.
This suggests that there is a high probability that a molecule
predicted as class 0 or 2 actually belongs to these classes using
these methods. In general, the Kohonen maps demonstrate a
significant speed advantage compared to Sammon maps and
they allow the instant inclusion of new individual or multiple
data points on the map without the need for recomputing the
entire data set. This enables visualization and analysis of larger
databases or virtual libraries compared with Sammon maps. On
the other hand, Sammon maps provide better distance and
topology preservation compared with Kohonen maps, and the
latter maps often contain gaps or undefined regions of chemical
space. Therefore, there is a tradeoff to be made for these
methods that will be the subject of further study.

There have been several published cases were a consensus
scoring scheme can increase the predictive power of a compu-
tational method.14,123,124We calculated the consensus scores for
the test set compounds belonging to the opposite experimental
classes 0 and 2 for all three modeling approaches. The
classification quality in this case is slightly better than the results
provided by the Kohonen mapping and recursive partitioning
alone: 6 of 7 (86%) compounds in class 0 and 12 of 14 (86%)
compounds in class 2 were correctly predicted (compare with
Table 4). However, the prediction accuracy is still lower than
in the case of Sammon mapping alone with up to 95%
compounds predicted correctly overall. This is primarily due
to the consensus scoring failing to classify pilsicainide and
vardenafil (nos. 1 and 20, Table 2); all three methods assigned
these compounds to different hERG inhibitory activity classes.
Both compounds have IC50 values close to those of the
intermediate class 1 (1.1 and 1.3µM, respectively) and were
incorrectly classified using the Kohonen map (Figure 6), while
the other algorithms made correct predictions. It should therefore
be noted that consensus scoring in this case was not as successful
as in previously published studies.14,123,124There was only one
distinct outlier in this test set, saxitoxin (no. 6 in Table 2), which
is incorrectly classified by all the methods (Table 2, Figures 4
and 6). Saxitoxin is a tricyclic molecule with two guanidino
groups, which can carry a positive charge or can be partially
deprotonated under physiological conditions. We suggest that
the polar nature of saxitoxin and the presence of several
tautomeric forms seriously complicate the calculation of relevant
molecular descriptors and the in silico classification of this
molecule. The calculation of molecular properties for minor
tautomeric forms under physiological conditions has already
been shown to lead to incorrect predictions.125

Although the described map-based models predict the ex-
tremes of activity correctly for the class 2 and class 0
compounds, insufficient statistics prevent correct assignment of
compounds belonging to the intermediate class 1. However, in

any sort of prospective analysis, the user of the model would
not know a priori the potency of a molecule. To give an idea
of the predictability of the best classification approach, Sammon
mapping, on the full activity range, we reduced the classification
problem into a two-class model. Arbitrarily, we considered
compounds with log10 IC50 < 0.5 as inhibitors and compounds
with log10 IC50 > 0.5 as noninhibitors. Using the same Sammon
map model depicted in Figure 4, we calculated the prediction
accuracy for the entire test set of 35 compounds (Table 6). The
two-class model correctly predicted 64% of inhibitors and 86%
of noninhibitors, with an average classification accuracy of 77%.
Because of the aforementioned poor predictability of the
mapping models for the intermediate potency agents, the last
exercise has an illustrative character. Nevertheless, the two-
class model still demonstrates good predictability and can be
used for rough estimation of the hERG inhibitory potential.

It is certainly worth noting that the statistics-oriented QSAR
approaches are sensitive to the properties of the molecules to
be tested. In cases when the molecular parameters are too far
from the parameters of the training set (for example, large
molecular weight, high lipophilicity, increased number of polar
groups, etc.), the predictions can be incorrect. Therefore, some
preprocessing of the tested structural data sets is usually required
to ensure their compatibility with the training set. Simple
threshold filtering criteria can be used for such preprocessing,
as well as the more sophisticated methods of removal of outliers
using special statistical techniques.121,122,126In addition, in this
study we have used a postfilter analysis in the form of a
Tanimoto similarity assessment with the recursive partitioning
model to remove molecules from the test set that are too
dissimilar to the training set as described with the recursive
partitioning approach. At present the different hERG modeling
methods described herein represent the state of the art and could
be combined and used in parallel as a consensus-modeling
approach,14 which might offer some improvement for the
prediction of external molecules across different compound
classes.

In this study, we have studied consistent sets of compounds
with literature hERG log10 IC50 data using recursive partitioning,
Sammon nonlinear maps, and Kohonen self-organizing maps.
Our results with an external test set, also from the literature,
indicate that these computational methods are all valuable as
clustering, classification, and visualization tools either used
individually or combined in a consensus model. We have also
provided further structural insights for molecular requirements
for hERG inhibition beyond our previous pharmacophore
studies.16,17,27 This study shows how the careful analysis of
literature data from many different laboratories can be a valuable
asset for computational model building127-129 along with the
appropriate analysis of similarity to the training set to avoid
extrapolation.118 As we have demonstrated with the recursive
partitioning model, molecules used initially as a test set can be
used to further expand the training set to update the model for
future testing. These computational models described therefore
represent the latest high-throughput filters for screening of
diverse virtual libraries of molecules to classify the hERG

Table 6. Percentage of Correctly Classified Compounds from the
External Test Set in a Two-Class Classification Task Using the Sammon
Mapping Technique

class
total no.
compds

correctly classified,
no. compds, %

log10 IC50 < 0.5 (inhibitors) 14 9, 64
log10 IC50 > 0.5 (noninhibitors) 21 18, 86
total 35 27, 77
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inhibitory potency of compounds prior to in vitro screening,
allowing the potential avoidance of potent inhibitors and more
efficient utilization of experimental resources.
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